

Pat Allen | Rachel Barrow | Alex Byard | Melanie Fonner | Brad Frederick | Brian LaChance | Mike Palmer

BIM Thesis | AEI Team 5 | Presentation #2 | 03 October 2012

Team Goals and Competition Goals

Goals

Team Goals

BIM Ex.

- Architecture
- Structural
- Mechanical
- Lighting / Electrical
- Construction
- Conclusion

- Façade Integration
 - Structure
 - Exterior Cladding
 - Glazing
- Recreation
 - Swimming Pool
 - Gymnasium
 - Locker Rooms
- Classrooms
 - Layout
 - Flexibility
 - Learning Environment

Competition Goals

	Team Overall Process Map									
Presentation #1	Presentation #2	Presentation #3	Proposal Presentation	Written Submission	Final Presentation					
14 September 2012	3 October 2012	24 October 2012	12 November 2012	22 February 2012	3-5 April 2012					
Design Review]					
		3D Coordination								
	Structural Analysis	3]					
	Lighting Analysis]					
	Mechanical Analys	sis]					
	Energy Analysis]					
	Sustainability (LE	ED) Evaluation]					
			Phase Planning (4D Mod	eling)						
	S.F. / Detailed Co	st Estimation]					
Existing Condition	Existing Conditions									
					Record Modeling					
Site Utilization Pl	anning									

BIM Ex.

Architecture

Structural

- Mechanical
- Lighting / Electrical
- Construction
- Conclusion

BIM Roles and Responsibilities

MECHANICAL ENGINEERS

- Utility Available and Capacity
- Mechanical System Options
- Mechanical System Space Requirements
- Mechanical System Selection Preliminary Mechanical System
- Design Energy Model Review
- Final Mechanical Design
- Updated Energy Model

NEXUS

- Precedent Research
- Engineering Goals / Criteria

STRUCTURAL ENGINEERS

- Geotechnical Report
- Preliminary Base Model
- Structural Systems Options
- Structural System Selection
- Preliminary Structural System Design
- Final Structural System Design

CONSTRUCTION MANAGERS

- BIM Execution Plan
- Site Investigation
- Utility Tie-in Points
- Constructability Input
- Preliminary Estimate
- Preliminary Schedule
- Site Logistics Input
- Value Engineering
- Final Estimate
- Final Schedule 4D Modeling

- Work Flows
- Multidisciplinary Integration
- Systems Integration
- Sustainability Work Plan
- Sustainability Strategies
- LEED Certification Analysis
- Final Project Documentation

LIGHTING / ELECTRICAL ENGINEER

- Utility Availability and Capacity
- Daylighting Options
- Lighting/Electrical System Selection
- Preliminary Lighting/Electrical System Design
- Site Lighting Design
- Energy Model Review
- Final Electrical Design
- Detailed Lighting Design · Updated Energy Model

BIM Execution Plan Update

Site Conditions

New Site Layout

-----PARK STREET CITY LEGAL RIGHT-DF-W -----

G	oa	S

BIM Ex.

Architecture

Structural

Mechanical

Lighting / Electrical

Construction

Conclusion

Architecture

New First Floor Plan

Old First Floor Plan

 \oplus

 \oplus

BIM Ex.

Architecture

Structural

Mechanical

Lighting / Electrical

Construction

Conclusion

Structural Goals

- Ease of Construction
- Low Cost
- Efficient Use of Material
- Limited Depth of Structure
- Interdisciplinary Input

Structural Systems

Existing Structural Grid

Proposed Structural Grid

Goals			Stee
BIM Ex.			
Architecture	<u>Pros</u>	<u>Cons</u>	
tructural	Easy to construct	Larger depth than	
lechanical	 Ability to cross long spans with no interior 	composite systemSomewhat heavy floor	
ighting / lectrical	beamsEfficient use of concrete material	systemPotential acoustical concerns	
Construction			
Conclusion			

وا

Structural Systems

I Frame with Precast Hollow Core Concrete Planks

Conclusions

Efficient use of building materials Very good constructability Excessive structural depth along girders Still worth consideration, but not the probable choice

Concrete Frame Using a One-Way Slab Goals BIM Ex. <u>Cons</u> Pros Architecture REBARS FROM BEAM TO BEAM-Typically deeper floor REINFORCED CONCRETE BEAM Does not require Structural system than steel additional fireproofing Much heavier than steel Mechanical Concrete is cheap and frame generally available Shrinkage and creep may Lighting / Good choice for the bay -COLUMN be concerns later in the life Electrical sizes of this building of the structure Construction

Conclusion

Structural Systems

TOTAL DEPTH: 2'- 6"

Conclusions

- Acceptable structural depth
- Generally average in terms of constructability and efficiency
- May work well with proposed ICF wall system
- Another option worth continued consideration

BIM Ex.

Architecture

Structural

Mechanical

Lighting / Electrical

Construction

Conclusion

Pros

- Lightweight
- Can span long distances
- Easy to construct
- Opportunity for open floor plan

Cons

- Potential for large deflections
- Greater depth than composite system
- Inefficient use of concrete material

Structural Systems

Non-Composite Deck on Steel Frame

- Very easy to construct
- material
- Excessively deep structure
- Probably not a feasible system for achieving team goals

Conclusions

Very inefficient use of concrete

BIM Ex.

Architecture

Structural

Mechanical

Lighting / Electrical

- Construction
- Conclusion

Pros

- Lightest-weight system
- More efficient use of materials than noncomposite
- Relatively quick construction
- Opportunity for open floor plan

<u>Cons</u>

- More labor-intensive than non-composite
- Added cost because of shear studs (welding)
- Requires fireproofing of steel members

Structural Systems

Composite Deck on Steel Frame

Conclusions

- Much more efficient use of building materials
- Acceptable structural depth
- Provides flexibility for MEP systems
- Viable option for continued exploration

Structural Systems

Advantages

- Thermally efficient
- Structurally useful as:
 - Exterior bearing walls
 - Shear walls
- Easy and quick to construct
- Reduced cost
- Adaptable

Construction

Conclusion

beams

Goals BIM Ex. Material Overall Ease of Structural Architecture Efficiency Construction Depth Hol Good Poor Non-Poor Poor Con Floor Systems Structural composite No Composite Fair Good Fair Good Stee Mechanical Framing Systems Con Fair Hollow core Good Good Poor concrete ICF Lighting / Fair Fair Fair Fair Wall Types Met One-way Mas Electrical slab and

Structural Systems Analyses

Depth Comparison

Structural Systems	Lifecycle Cost	Functionality	Upfront Cost	Total
llow Core Concrete Planks	4	4	3	11
mposite Slab on Metal Deck	4	4	2	10
n-composite Slab on Metal Deck	3	2	3	8
el Frame	4	3	2	9
ncrete Frame (One Way Slab and Supporting Beams)	3	3	3	9
⁷ (Insulated Concrete Form) Exterior Wall System	5	5	4	14
tal Stud Partitions and Drywall	2	4	4	10
sonry Partitions	4	2	3	9

Mechanical Analysis

Annual Wind Analysis and Wind Rose

Preliminary Vasari Energy Model

Conclusion

Annual Energy Use/Cost

Monthly Peak Demand

Humidity

Conclusion

Mechanical Zone Diagrams

exus

BIM Ex.

Architecture

Structural

Mechanical

Lighting / Electrical

Construction

Conclusion

Zone	Total C	apacity	Deak CEM	Primary Occupancy
Zone	Tons	MBh	Fear CI IVI	Туре
1	22.4	269.2	8,753	Classroom
2	41.8	501.4	12,458	Classroom
3	14.6	175.7	7,422	Lobby
4	29.1	348.8	8,403	Kitchen
5	16.1	193.0	4,102	Gymnasium
6	13.6	162.9	2,634	Natatorium
7	60.9	730.8	18,269	Classroom
8	9.1	108.8	3,810	Lobby
9	28.3	340.1	9,412	Classroom
10	80.3	964.5	26,067	Classroom
Total	306.3	3675.1	110,969	

Preliminary Trane Trace Model

ENGINEERING CKS

	Cooling	Heating
% OA	52.7	0.0
cfm/ft²	1.27	0.38
cfm/ton	362.34	
ft²/ton	286.04	
Btu/hr∙ft²	41.95	-4.89
No. People	3,896	

COOLING COIL SELECTION											
Total Capacity ton MBh			Sens Cap. MBh	Coil Airflow cfm	Enter DB/WB/HR °F °F gr/lb			Leave DB/WB/H °F °F gr/lt			
Main Clg Aux Clg	306.3 0.0	3,675.1 0.0	2,766.5 0.0	101,331 0	79.9 0.0	63.8 0.0	64.2 0.0	55.0 0.0	51.4 0.0	51.4 0.0	
Opt Vent	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0.0	
Total	306.3	3,675.1									

HEATING COIL SELECTION											
	Capacity	Coil Airflow	Ent	Lvg							
	MBh	cfm	°F	°F							
Main Htg	-428.2	33,291	68.2	79.9							
Aux Htg	0.0	0	0.0	0.0							
Preheat	0.0	0	0.0	0.0							
Humidif	0.0	0	0.0	0.0							
Opt Vent	0.0	0	0.0	0.0							
Total	-428.2										

Hybrid Geothermal

Figure 2—THE ECONOMICS OF HYBRID SYSTEMS

Invest in hybrid GSHP vs. conventional HVAC
Fully invest in GSHP vs. hybrid

BIM Ex.

Architecture

Structural

Mechanical

Lighting / Electrical Construction

Conclusion

Design Criteria:

- The water temperature is set between 80° F and 84° F.
- The air temperature is set at two degrees above the pool water temperature.
- The relative humidity is maintained between 50% and 60%.

Swimming Pool

Figure 5 - Standard Dehumidifier Schematic

Trichloramine Capture and Exhaust

Figure 1: Source capture and exhaust strategy.

BIM Ex.

Architecture

Structural

Mechanical

Lighting / Electrical

Construction

Conclusion

Flat Plates

<u>Pros</u>

- 50-80% Recovery
- Very compact system
- Latent recovery

Cons

Exhaust/OA inlet locations not as flexible

Heat Recovery Analyses

Ethylene Glycol Run Round

Pros

- 55-70% Recovery
- Exhaust/OA inlet Pump energy use locations can vary No latent recovery
- Thermal storage potential

Cons

Piping cost

Daylighting

Design Considerations

- Clerestories/ Light wells
- Overhangs
- Light shelves
- Shades

Lighting / Electrical Systems

Goals

- BIM Ex.
- Architecture
- Structural
- Mechanical
- Lighting / Electrical
- Construction
- Conclusion

http://www.solaripedia.com/images/large/2597.jpg

http://www.edcsystems.com.au/uploads/images/lpswich_SSP_Pool_View_2.JPG

Design Considerations

- Occupancy/vacancy sensor
- Daylight sensor
- Direct/indirect for classroom
- Indirect for pool

BIM Ex.

Architecture

Structural

Mechanical

Lighting / Electrical

Construction

Conclusion

Site Considerations

- Contaminated Soil
- Available Utilities
- Community Garden
- Parking
- Bus Lane
- Entrances/Exits
- Field
- Occupant Safety
- Site and Building Security

Site Plan

Estimate and Delivery Method

Goals	Square Foot Cost Estimate	Inte
BIM Ex.	LOW:	
Architecture	Entire Elementary School - \$180/SF	Floor Finishes
Structural	Total Cost - \$17,460,000	Ceiling Finishes
Mechanical Lighting /	HIGH: Entire Elementary School - \$220/SF Total Cost - \$21.340.000	Roof Finishes
Construction	Gymnasium - \$180/SF * 7900 SF ≈ \$1.422.000	Casework
Conclusion	Swimming Pool - \$260/SF * 6700 SF ≈ \$1,742,000	Metal Decking
	Building Square Footage – 97,000 SF	

ior Materials	Lifecycle Cost	Functionality	Upfront Cost	Total
Polished Concrete Corridor Floors	5	5	4	14
VCT Corridor Floors	3	4	3	10
Linoleum in Classrooms	3	4	3	10
Carpet Tile in Classrooms	3	3	3	9
Exposed Ceiling	5	5	5	15
Drop Ceiling	2	3	3	8
White TPO Roof	5	5	3	13
Green Roof	3	3	2	8
Brick Exterior	4	4	2	10
Metal Panel Exterior	2	3	2	7
Movable Casework	2	5	2	9
Built-in Casework	3	1	3	7
Regular Composite Metal Decking	2	5	4	11
Acoustical Metal Decking	4	3	2	9

Goals															
		June	July	August	September	October	November	December	January	February	March	April	May	June	Jul
BIM Ex.	Month	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Architecture		Notice to Pro	oceed												
Structural		Excavation													
Mechanical			Foundation	Exterior Wall	s Exterior Walls										
iabting /						Interior Wall	s Interior Walls								
Electrical						Roof	Roof								
Electrical								Rough-ins	Rough-ins	Rough-ins	Rough-ins	Rough-ins	Rough-ins	T 2: 1	T 2 1
Construction										Finishes	Finishes	Finishes	Finishes	Finishes	Fiftishes
Conclusion															

Certificate of Occupancy

